Primero aclararemos que "objeto transneptuniano" no es sinónimo de objeto del Cinturón de Kuiper, ya que los objetos transneptunianos engloban a todos los objetos más allá de la órbita de Neptuno, como se ha indicado antes.
El Cinturón de Kuiper debe su nombre a Gerard Kuiper, astrónomo estadounidense de origen holandés, que predijo la existencia del Cinturón en los años 1960, 30 años antes de las primeras observaciones de estos cuerpos.
Todavía se desconoce el origen de la estructura del Cinturón de Kuiper, pero los astrónomos están esperanzados con que el telescopio Pan-STARRS, encargado de la localización de más TNOs, de pistas sobre su formación. Diferentes simulaciones por ordenador de las interacciones gravitatorias del periodo de formación del Sistema Solar indican que los objetos del cinturón de Kuiper pudieron crearse más hacia el interior del Sistema Solar y haber sido desplazados hasta sus posiciones actuales entre 30 y 50 UA por las interacciones con Neptuno al desplazarse lentamente este planeta desde su posición de formación hacia el exterior hasta su actual órbita. Estas simulaciones indican que podría haber algunos objetos de masa significativa en el cinturón, quizás del tamaño de Marte. Pero estas teorías aún no han sido demostradas.
|
Pablo Santos Sanz. |
En la actualidad se desarrollan numerosos programas de búsqueda de TNOs. La sonda espacial New Horizons, la primera misión dedicada a la exploración del cinturón de Kuiper, fue lanzada el 16 de enero de 2006. Está prevista su llegada a Plutón el 14 de julio de 2015. Una vez pasado Plutón está previsto que explore uno o varios TNOs.
También son muchos los astrónomos como Pablo Santos Sanz, los que dedican su trabajo al estudio de estos objetos, lo que permitirá en un futuro llegar a comprender mucho mejor esta estructura del Sistema Solar, así como también las propiedades de los TNOs. En el II Encuentro de Exploración del Sistema Solar celebrado en Bilbao en junio de este año, varios científicos expusieron sus investigaciones en este campo de la astronomía. Pablo Santos ofreció la Conferencia: "TNOs are cool: un estudio de la región transneptuniana con el telescopio espacial Herschel". El programa TNOs are cool cuenta con 400 horas de observación con el telescopio Herschel. Al final del proyecto se espera haber observado cerca de 130 objetos, 25 de ellos binarios, pertenecientes a todas las clases de TNOs: plutinos, resonantes,... Utilizando el detector PACs a bordo de Herschel, usado en su modo fotométrico, se espera obtener, el diámetro radiométrico y los albedos de todos estos objetos. Por ello, los principales objetivos de este programa de observación son:
i) determinar los tamaños y los albedos de TNOs y Centauros.
ii) medir la densidad de aquellos objetos que sean binarios.
iii) constreñir las propiedades superficiales de estos objetos.
iv) determinar las curvas de luz térmicas de 6 objetos observados durante periodos de rotación completos.
v) estudiar las posibles correlaciones entre tamaños, albedos, colores, composición y parámetros orbitales (como diagnóstico de procesos evolutivos).
El CSIC, también lleva a cabo otra investigación de la mano de J.L. Ortiz. Mediante series temporales de datos fotométricos de TNOs, obtenidas mediante observaciones CCD realizadas en diferentes telescopios, se espera estudiar las propiedades físicas de los TNOs mediante el estudio de su rotación. Los resultados iniciales de esta investigación indican que la mayoría de los TNOs presentan variaciones debidas a manchas de diferentes albedos, mientras que la presencia de elipsoides bastante elongados es marginal.
3.1.-Estructura del Cinturón de Kuiper.
|
La migración de Neptuno tuvo consecuencias importantes para el Cinturón de Kuiper. |
De acuerdo con los estudios más recientes sobre la formación de Urano y Neptuno, éstos podrían haber sufrido una importante migración radial hacia el exterior, debido al intercambio de momento angular con los planetesimales presentes en esa región durante las últimas etapas de la formación del Sistema Solar. Esta migración radial habría tenido importantes consecuencias sobre la presente estructura dinámica del cinturón de Kuiper. Tal como lo reflejan las observaciones, la mayoría de los cuerpos observados en el cinturón de Kuiper se encuentran en resonancia de movimientos medios exteriores con Neptuno, hecho que también se refleja en la presente órbita de Plutón.
Durante las formación del Sistema Solar, la gravedad de Neptuno ha desestabilizado las órbitas de los objetos que estaban en ciertas regiones, y, o bien los ha enviado al Sistema Solar interior, o bien hacia el disco disperso, e incluso hacia el espacio interestelar. Esto hace que el cinturón de Kuiper posea carencias pronunciadas en su diseño actual, similar a los huecos de Kirkwood, en el cinturón de asteroides. En la región situada entre 40 y 42 UA, por ejemplo, ningún objeto puede mantener una órbita estable en estos momentos, y cualquier objeto observado allí debería haber emigrado hace poco tiempo.
En toda su extensión, incluyendo las regiones periféricas, el Cinturón de Kuiper se extiende desde aproximadamente 30 a 55 UA. También se puede englobar sus dimensiones desde la resonancia con Neptuno 2:3 ( a 39,5 UA) hasta la resonancia 1:2 (a aproximadamente 48 UA). El Cinturón de Kuiper es bastante grueso, extendiéndose su principal concentración 10 grados fuera del plano de la elíptica, aunque una distribución más difusas se extiende mucho más afuera.
3.2.- Composición del Cinturón de Kuiper.
Los estudios sobre el cinturón de Kuiper desde su descubrimiento por lo general han indicado que sus miembros están compuestos principalmente de hielos: una mezcla de hidrocarburos ligeros (como el metano), amoníaco y hielo de agua, una composición que comparten con los cometas. Las bajas densidades observadas en los TNOs cuyo diámetro es conocido, (menos de 1 g cm-3) es consistente con una composición de hielo.
Las observaciones muestran un amplio rango de características en los objetos del Cinturón de Kuiper. Algunos TNOs aparecen tan oscuros como un terciopelo negro, mientras que otros tienen una reflectividad de hielo fresco. Algunos tienen un aspecto rojizo, mientras que otros tienen un color neutro. Los espectros muestran que el hielo de agua domina la superficie de la mayoría de los TNOs mientras que otros revelan hielos exóticos de compuestos como el metano, etano, hidratos de amoniaco, monóxido de carbono y nitrógeno. Plutón pertenece al grupo del nitrógeno.
En 2000 y 2001 Hal Levison del Southwest Research Institute, Mike Brown de Caltech y Alan Stern descubrieron que existen dos poblaciones diferentes en referencia a las inclinaciones orbitales en el Cinturón de Kuiper. Los investigadores discriminaron una población dinámicamente "fría" de órbitas de baja inclinación que parecían indicar que estos cuerpos se formaron en estos lugares. La segunda población de objetos dinámicamente "calientes" representaba a objetos con altas inclinaciones que parecía que habían sido transportados hasta la región por efectos dinámicos, principalmente por la migración de los planetas gigantes y por el vaciado de las regiones donde se formaron estos planetas.
Estas extrañas evidencias resultaron sorprendentes, pero eran reales. Además los colores de los TNOs parecían reforzar esta idea. La población "caliente" es más rojiza en promedio que la población "fría" con una mayor diversidad de colores.
Muchos TNOs tienen lunas. A pesar de las actuales dificultades tecnológicas para localizar las lunas alrededor de estos débiles y distantes objetos, más del 20% de los TNOs conocidos tienen satélites. Entre ellos los cuatro más grandes: Plutón, Eris, Haumea y Makemake. Varios TNOs tienen más de una luna, Plutón es otra vez el ejemplo principal. A medida que progresa la actual tecnología de observación, es de esperar que encontremos satélites cada vez más débiles en los TNOs. Podríamos aprender que la mayoría de los TNOs tienen lunas y que aquellos sin satélites son raros.
La mayoría de las lunas de los TNOs son pequeñas comparadas con sus compañeros primarios. Es notable advertir, que varios TNOs tienen lunas de diámetros de la mitad del diámetro del objeto principal, con lo que podrían llamarse más propiamente objetos binarios. En 1978, Plutón fue el primero de estos objetos binarios descubierto, aunque en aquel tiempo nadie sabía que Plutón pertenecía al Cinturón de Kuiper.
3.3.-Los colores del Cinturón de Kuiper.
|
La presencia de metanol en la superficie de un cuerpo del Cinturón de Kuiper depende de la distancia a la que se formó el objeto y su diámetro. |
La gama de colores en la superficie de un cuerpo guarda relación con su composición, por ello, su estudio es de gran importancia para comprender la naturaleza y origen de estos objetos. Los TNOs muestran una variación cromática sin parangón en el Sistema Solar. Algunos reflejan la luz del Sol como si de espejos sucios se tratasen, mientras que otros son increíblemente rojizos.
|
Modelo de Cooper. |
El color de los TNOs está ligado a un tipo de alteración, o al menos este es el resultado que arroja un modelo numérico elaborado por John Cooper, investigador en el Centro Espacial Goddard.
El investigador norteamericano afirma que los TNOs presentan una estructura de cebolla con colores que van del blanco al negro, pasando por el rojo, sin embargo no todos son oscuros. Esto sucede porque están sometidos a la erosión producida por el bombardeo de micrometeoritos, que les hace perder su costra negra, con lo que aflora la capa rojiza de la estructura de cebolla. Por otro lado los episodios eruptivos del hielo primitivo que proceden de las capas más profundas son los responsables de que la superficie tenga un color blanco brillante.
Cooper espera que este modelo sobre los colores de los TNOs sea confirmado por la sonda New Horizons que llegará a Plutón en julio de 2015.
Recientemente M. Brown ha propuesto que el responsable de la variedad cromática de los TNOs sería la molécula de metanol (CH3OH). Todos los objetos del Cinturón de Kuiper habrían nacido con una cierta cantidad de metanol, algo que se deduce de la presencia de esta molécula en cometas que proceden de esa región. El metanol tiene una particularidad, y es que forma compuestos químicos orgánicos de color rojizo al ser bombardeado por los rayos cósmicos y la luz ultravioleta del Sol.
|
Color de los TNOs en diferentes filtros. |
Brown deduce que los TNOs que se formaron más cerca del Sol recibieron más radiación por parte de nuestra estrella por lo que el metanol se evaporó de su superficie por efecto de las "altas" temperaturas y como resultado ahora muestran superficies oscuras blancoazuladas donde el agua y el dióxido de carbono son los elementos principales que determinan la coloración actual (el bajo albedo se debe a la presencia de otras sustancias orgánicas). Por contra, los TNOs que se formaron más lejos del Sol presentarán un tono rojizo por culpa del metanol. Por último, los objetos más lejanos retendrían importantes cantidades de amoniaco y podrían formar un hipotético tercer grupo en la clasificación cromática de TNOs. Debemos recordar que se cree que los objetos del Cinturón de Kuiper se formaron más cerca del Sol de lo que se encuentran en la actualidad y luego migraron hasta sus posiciones presentes por culpa de diversos movimientos planetarios, así que los TNOs sin metanol se habrían formado entre 12 y 19 UA. Es decir, si esta hipótesis es cierta podríamos tener una herramienta adicional para calcular con más precisión las posiciones primigenias de los objetos del Cinturón de Kuiper, permitiendo comprobar la bondad de los modelos que explican las migraciones planetarias.
3.4.- El acantilado de Kuiper.
El acantilado de Kuiper es el nombre que le dan los científicos a la parte más alejada del cinturón de Kuiper. Es una incógnita que ha dado quebraderos de cabeza durante años. La densidad de objetos en el cinturón de Kuiper decrece drásticamente, de ahí su nombre de acantilado.
La explicación más lógica sería la existencia de un planeta con una masa suficientemente grande como para atraer con su gravedad a todos los objetos de su órbita. Ese supuesto planeta recibe el nombre de Planeta X.
Hasta la fecha, nadie ha aportado ninguna prueba de la existencia de tal planeta ni una explicación para este fenómeno. Hay una buena razón para ello. El cinturón de Kuiper está demasiado lejos para que podamos observarlo apropiadamente. Para ello tenemos que salir y echar un vistazo antes de que podamos decir nada sobre la región, y eso no será posible al menos durante una década. La sonda de la NASA New Horizons que se dirige hacia Plutón y el Cinturón de Kuiper, no llegará a Plutón hasta 2015, y tardará unos años más en alcanzar esta región.
3.5.- ¿Es Tritón un cuerpo del Cinturón de Kuiper?